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Introduction

Pluripotent stem cells, regardless of their cell source, are 
capable of self‑renewal and give rise to multiple specialized 
cell types, even to a complete adult organism.[1] This has 
allowed rapid progress in stem cell biology. However, 
transplanted cells seem to be rejected by the host and don't 
to survive long enough for functional integration to might 
occur. The creation of adult‑induced pluripotent stem 
cells  (iPSCs) allows autologous applications for disease 
treatments to become one of the most exciting areas in 
stem cell therapy.[2] To evaluate the approaches that might 

have provided promising options for regenerative medicine, 
especially for the treatment of the heterogeneous plethora 
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of neurological disorders, we summarized the recent 
experimental results and further discussed the potential 
improvement of transplanted cell survival after hypoxic 
preconditioning.

Ischemic Conditions in Brain Disorders

Hypoxia or lower oxygen levels might occur in daily life, in 
different parts of the body, and under a variety of conditions  
(For example, individuals in mountainous regions can adapt 
to hypoxia generated by lower oxygen levels at higher 
elevations, which allow managing to maintain normal 
physiological functions in plateau residents). In the nervous 
system, ischemic/hypoxic conditions are more likely to 
happen after brain disorders as neuronal activities consume 
a large amount of oxygen and glucose for maintenance 
of normal brain activities. Embryos and newborns have a 
significantly higher ability to survive hypoxic and ischemic 
conditions. It is well known that bone marrow cells survive 
well in the physiologically hypoxic conditions  (1–6% 
O2) in the bone marrow. In addition, blood oxygen and 
glucose levels in the brain, or an ischemic event caused 
by occlusion of blood vessels, could greatly influence cell 
survival and brain functions.[3,4] Although decreased energy 
demands prevail under hypoxic and ischemic conditions as 
a compensatory response, severe ischemia leads to neuronal 
cell death and injuries to other systems, such as disruption 
of the blood-brain barrier due to damage to endothelial cells 
and the extracellular matrix  (ECM). On the other hand, 
manipulation of hypoxic conditions within the sublethal 
range in physiological and pathological conditions shows a 
priming effect of improving the tolerance of cells, tissues, 
and the whole body to future insults. Translation of hypoxic 
preconditioning into clinical applications has been an 
active research area. We summarize the adaptive changes 
focusing on cellular signaling pathways and gene regulation 
following hypoxia and hypoxic preconditioning as well 
as the potential clinical application of preconditioning in 
cell‑based therapies.

Neurobiological Etiology of Brain Disorders

Neurological disorders are associated with degeneration of 
neurons and gradual losses of neural functions. Due to the 
phenotypic heterogeneity, complicated neuronal connectivity, 
and the multitude of interactions among neurons, astrocytes, 
microglial cells, oligodendrocytes, and stem/progenitor 
cells, neurological disorders are often regarded as some of 
the most complicated disease conditions to decipher and 
treat.[5‑7] Recent research has identified multiple factors 
and key mechanisms that regulate distinct cell plasticity, 
such as cell type‑specific differentiation and culture 
protocols. These specific manipulations of cells (e.g., stem 
cell‑derived/differentiated neurons in  vitro) highlight the 
potential for the treatment of central nervous system (CNS) 
disorders such as stroke, traumatic brain injury, Parkinson’s 
disease  (PD), and Alzheimer’s disease  (AD).[8] However, 
there is still a great unmet translational need for improving 

the disease models and effective translation of therapeutic 
interventions. So far, much effort has been done to increase 
the feasibility and efficacy of cell‑based therapies. In this 
review, we highlight the major types of endogenous and 
exogenous stem cells and discuss the recent progress in 
cell‑based therapy for CNS disorders.

Neural stem cells (NSCs) and neural progenitor cells (NPCs) 
in the adult brain are mainly located in two regenerative 
niches: the subventricular zone (SVZ) flanking the lateral 
ventricles and the subgranular zone (SGZ) of the dentate 
gyrus  (DG) in the hippocampus.[9‑14] In rodent models, 
neurons originating from these two areas have distinct 
destinies: the neuroblasts derived from the SVZ migrate 
along the rostral migratory stream, become interneurons, and 
integrate with other cells in the olfactory bulb. The newborn 
neurons of the SGZ differentiate and assimilate into the local 
neural network of the hippocampus where they are involved 
in learning, memory, and mood regulation.[14] Interestingly, 
human SVZ neurogenesis exhibits an evolutionary 
divergence which shows a remarkable difference from other 
vertebrates. In humans, it was shown that long‑distance 
migration of SVZ‑derived NPCs to the olfactory bulbs is 
virtually nonexistent, while there is abundant neurogenesis 
from the SVZ into the adjacent striatum.[15,16]

Neurogenic activities in the SVZ and SGZ may be 
upregulated following stroke.[17,18] Endogenous NPCs 
proliferate after ischemia and differentiate into neuroblasts 
and astrocytes, which subsequently migrate along the route 
from the SVZ to the infarct region.[19‑21] Increasing evidence 
suggests that some factors, such as lipid accumulation, 
suppress the homeostatic and regenerative functions of 
NSCs (e.g., perturbation of the microenvironmental fatty 
acid metabolism in AD impedes neural regeneration[22]). 
Accumulating evidence unveils that NPC functions 
are regulated by different signals, which should be 
taken into consideration when optimizing cell‑based 
therapies.[23‑27] Identification and modification of inhibitory 
factors might help to augment the brain’s adaptive 
endogenous regeneration to various neurological disorders 
and improve stem cell‑mediated brain repair.

Hypoxia and Diseases

Hypoxia and mobilization of endogenous stem cells
The activation of chemokine receptors can increase the 
number of migrating NPCs  (e.g., the CXC chemokine 
receptor type  4  [CXCR4], which is the cognate receptor 
for stromal‑derived factor 1 [SDF‑1], crucial for coupling 
neurogenesis with angiogenesis after stroke and directing the 
migration of neuroblasts to the infarct region[28]). In addition, 
C‑C chemokine receptor type 2 (CCR2), the cognate receptor 
for monocyte chemoattractant protein 1, is upregulated in 
migrating neuroblasts following ischemia and is critical for 
proper destination targeting.[29]

Neurotrophic and growth factors also play important roles 
in the regulation of adult regeneration, including, but not 
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limited to, granulocyte‑colony‑stimulating factor (G‑CSF), 
insulin growth factor (IGF‑1), glial cell‑derived neurotrophic 
factor (GDNF), and brain‑derived neurotrophic factor (BDNF).
[30‑32] G‑CSF and IGF‑1 can reduce NPC death through 
altering key survival pathways  (e.g., the phosphoinositide 
3 kinase‑Akt pathway). Several recent clinical trials 
demonstrated the ability of G‑CSF to both mobilize 
endogenous bone marrow cells and exert its neuroprotective 
effects to promote stroke recovery.[33] BDNF and noggin, 
another developmental protein, can actively recruit NPCs 
to form new medium spiny projection neurons (MSNs) and 
ameliorate the progressive impairment of motor function 
and cognition associated with Huntington’s disease (HD).[34] 
In addition to growth factors, anti‑inflammatory drugs such 
as indomethacin, noncoding RNA, and hormones can also 
increase endogenous NPC proliferation.[35,36] Together, these 
studies corroborate the principle that factors that promote 
neurogenesis might contribute to better cell‑based therapies 
for neurological disorders.

Mobilization of stem cells from the bone marrow also has 
great therapeutic potential.[37] Plerixafor  (also known as 
age‑related macular degeneration (AMD)‑3100, an inhibitor 
of CXCR4) significantly increased vascular endothelial 
growth factor  (VEGF) receptor 2  (VEGFR‑2)‑positive 
cells in the peripheral blood, elevated SDF‑1 levels, and 
promoted blood vessel formation in an ischemic flap model. 
Hypoxia‑induced upregulation of CXCR4 has been studied 
in CD34+ cells and cardiac progenitor cells in vitro and after 
transplantation (including in utero or intravenously), which 
resulted in facilitated recruitment of donor CD34+ cells to 
the heart against ischemia‑reperfusion injury.[38] Co‑culture 
of neurons with SDF‑1‑secreting olfactory ensheathing 
cells after oxygen–glucose deprivation  (OGD) treatment 
showed enhanced neurite outgrowth.[39] G‑CSF could 
mobilize CD34+  hematopoietic stem cells and effective 
to reduce the microglial responses in the preterm brain 
following hypoxic‑ischemic injury.[40] Bone morphogenetic 
protein  (BMP), erythropoietin  (EPO), G‑CSF, and 
interleukin‑10  (IL‑10) showed synergistic effects for 
increasing the homing and differentiation of NSCs 
and bone marrow mesenchymal stem cells  (BMSCs) 
into the peri‑infarct/lesion regions.[41‑44] Fasudil, an 
inhibitor of Rho kinase, significantly increases cellular 
G‑CSF levels, contributing to NSC mobilization to treat 
hypoxia/reperfusion injury. Mobilization of intravenously 
injected endothelial progenitor cells (EPCs) can be induced 
by shock wave treatment from the peripheral blood to 
ischemic hind limbs.[45] In chronic hypoxia secondary to 
pulmonary hypertension, when migratory adaption to SDF‑1 
and cell adhesion are significantly inhibited, hypoxic EPCs 
with upregulated VEGFR‑2+/SCA‑1+/CXCR‑4+ (SCA‑1: 
stem cell antigen 1) seem insufficient to stimulate the 
remodeling of the vascular network.[46] Enhancement of 
EPO/EPOR is demonstrated to attenuate hypoxia‑induced 
pulmonary hypertension, while EPOR (‑/‑) mice fail in the 
mobilization of EPCs to pulmonary endothelium and to other 
tissue after hypoxic‑ischemic injury.[47]

Key mechanisms underlying hypoxia and hypoxic 
adaptation
Hypoxia‑inducible factor 1‑alpha (HIF‑1α) is a critical 
mediator in hypoxia and reactive oxygen species 
(ROS)‑induced responses, which is involved in the activation 
of many cytokines, chemokines, transcription factors, and 
growth factors in response to hypoxia in almost all kinds 
of cells.[48,49] HIF‑1α was stabilized to upregulate β‑catenin 
transcription in myelogenous leukemia stem cells.[50] 
Hypoxic adaptation increases the expression of glucose 
transporter isoform 3 in the neuro‑2A neuroblastoma cells 
through regulation of the activator protein 1, cAMP response 
element‑binding protein  (CREB), HIF‑1α, and hypoxia 
response element.[51] In hypoxia‑treated mesenchymal 
stem cells  (MSCs), the glucose‑6‑phosphate transporter 
is significantly increased through upregulation of HIF‑1α, 
aryl hydrocarbon receptor  (AhR), and AhR nuclear 
translocator.[52] In a γ‑radiation model, HIF‑1α expression 
and activation of mechanistic target of rapamycin (m-TOR) 
contribute to the development of radio‑resistance.[53] Recent 
investigations suggest a regulatory role of HIF proteins on 
microRNA (miRNA) expression under hypoxic conditions. 
HIF‑1α can bind to the placental growth factor  (PlGF) 
promoter and regulate the synthesis for miRNA‑214 to 
target PlGF posttranscription regulation in sickle cell 
disease and cancer.[54] Hypoxia promotes proliferation of 
BMSCs, and miRNA‑210 was reported to be involved in 
the BMSC proliferation through an interaction with the 
HIF pathway.[55] Under lethal OGD, BMSCs also show 
upregulated miRNA‑34a, a pro‑apoptotic signal molecule 
which promotes oxidative stress and causes mitochondrial 
dysfunction through repressing silent‑mating‑type 
information regulation 2 homolog 1 and activating forkhead 
box O3.[56] Significant changes in hydrogen sulfide  (H2S) 
and cystathionine γ‑lyase (CSE) might occur during OGD. 
The CSE/H2S system has thus been considered a potential 
target to protect BMSCs against apoptosis in transplantation 
therapy. In neurons after OGD, DJ‑1 proteins (encoded by 
PARK7) translocate into the mitochondria, where mitigation 
of oxidative stress may mediate neuroprotection after 
hypoxia and ischemia.[57]

The levels of matrix metalloproteinase  (MMP) in the 
brain after ischemia and in hippocampal slice cultures 
after OGD are associated with glial activation. MMPs are 
also migratory factors for stem cells. In humans, hypoxia 
treatment of CD34+  umbilical cord blood hematopoietic 
stem cells  (UCHSCs) results in the upregulation of 
cAMP‑1‑activated exchange protein  (Epac‑1) and MMPs, 
facilitating cellular engraftment, migration, and differentiation 
after transplantation into ischemic brains.[58] MMPs are 
further subclassified into transmembrane types  (MT‑1 to 
MT‑3, and MT‑5) and glycosylphosphatidylinositol‑anchored 
types (MT‑4 and MT‑6). When exposed to pro‑inflammatory 
cytokines and hypoxia, the MMP inhibition in BMSCs is 
mediated by the tissue inhibitor of metalloproteinase 1, which 
is considered an important mechanism to protect the ECM.
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In vivo studies confirmed the decreased myelin density in the 
white matter after cerebral hypoperfusion[59‑61] (e.g., cilostazol, 
an activator of cyclic AMP, which reversed the white matter 
loss and promoted oligodendrocyte differentiation). The 
neuregulin‑1 isotype β‑1/ErbB4 signaling was involved 
in protecting oligodendrocyte progenitor cells  (OPCs) 
during and after a hypoxic event. In hypoxic culturing 
conditions (3% O2) and methylprednisolone co‑treatment, 
the spinal cord‑derived neural progenitors downregulated 
HIF‑1α and the hairy and enhancer of split‑1, a downstream 
Notch signaling mediator. HIF‑1α depletion in ES cells 
showed significant reduction in sex‑determining region 
Y box  (SOX)‑1 and elevation in BMP‑4, supporting the 
potential mechanism underlying hypoxia‑mediated neural 
commitment and differentiation.

Hypoxic and ischemic preconditioning in vivo
Sublethal ischemia has been demonstrated to be effective 
for an enhanced tolerance to lethal ischemia in the brain 
and the heart. Protective effects after hypoxic or ischemic 
preconditioning involve neural plasticity processes and 
adaptive responses in the brain. Hypoxia‑preconditioned 
cells and tissue show changes in physiology, neurochemical, 
and neuroelectrophysical properties.[62] Investigations of 
sublethal hypoxic pretreatment in vivo as well as in vitro 
might provide new strategies for the therapy or prevention 
of CNS disorders and injuries.

Ischemic tolerance in the CNS can be induced by hypoxic 
preconditioning. In adult animals after fetal tracheal occlusion, 
the blood pressure could drop to an extremely low level within 
several minutes, and severe physiological responses might 
occur. Although respiratory frequency and cardiovascular 
activity can be regulated to control the oxygen balance, the 
protective mechanisms after preconditioning hypoxia have 
been proven to be more than these systemic controls. Repeated 
autohypoxic models in which animals were placed into sealed 
chambers have been utilized to study hypoxic tolerance by 
the measurement of grasping behaviors.[63]

Hypoxia, cancer, and cancer stem cells
Hypoxia is one of the common players in tumorigenesis 
and tumor progression. The cancer stem cell niche, 
recently identified in many types of tumors, demonstrates 
a hypoxic environment for tumor self‑renewal. There is 
evidence that low ROS conditions contribute to the tumor 
stemness.[64] Hypoxia in tumors may lead to an elevation of 
octamer‑binding transcription factor 4 (OCT‑4), the master 
pluripotency factor, and one of the cancer cell stemness 
markers.[65] Kruppel‑like factor 4  (KLF‑4), NANOG, and 
OCT‑4 increase dedifferentiation and cell resistance to 
chemotherapeutic agents and hypoxic injury.[66,67] In pancreatic 
ductal adenocarcinoma cells, hypoxia can significantly 
upregulate nestin through transforming growth factor 
β‑1  (TGFβ‑1)/mothers against decapentaplegic homolog 
4 (SMAD‑4) signaling.[68] Hypoxia induces CD24 (a marker 
for tumor formation and metastasis) through HIF‑1α binding 
to the promoter in many cancers.[69] HIF‑1α and the MT‑1 

MMP signaling has been also identified for oncogenic cell 
migration.[70] In medulloblastoma cells, hypoxia can stabilize 
the interactions between HIF‑1α and Notch proteins, causing 
an expansion of CD133+/nestin+  cell subpopulations.[71] 
In melanoma cells, HIF induction, in response to hypoxia, 
results in greater melanoma proliferation, migration, and 
metastasis through SNAIL1 activation and E‑cadherin 
downregulation.[72] Cobalt chloride  (CoCl2) exposure 
(to mimic the effect of hypoxia) activates HIF‑1α/pAkt 
and upregulates genes required for metabolite transport 
and metabolism in tumor cells (such as glioblastomas). The 
miRNA regulation may be involved in the maintenance of the 
cancer stem cell phenotype.[73,74] One of the HIF‑regulating 
factors, EPO, has been shown to promote tumorigenesis 
by activating Janus kinase  (JAK)/STAT signaling.[75] In 
Hodgkin and Reed-Sternberg tumor cells, Notch‑1 and 
JAK/STAT pathway are activated, whose inhibition results in 
apoptosis for treating classical Hodgkin lymphoma.[76] In an 
experimental glioma model, tumor cells expressed CD133, 
nestin, VEGF, sodium calcium ex-changers, and showed 
hybrid cell death after chemotherapy drug treatment.[77,78] 
Hypoxia also inhibits HIF‑1α degradation, which is BMP 
dependent.[79] Further studies suggest HIF‑1 and VEGF 
as two angiogenic targets that can be used for diagnosis 
and blocked for treating cancers.[80‑82] Anthracycline 
chemotherapy is effective in inhibiting HIF‑1, which blocks 
the mobilization of circulating progenitors to the tumor 
angiogenesis.[83]

Stem Cells and Cell Therapy

Stem cells are major sources of cell‑based therapy [Figure 1]. 
They can be classified as totipotent cells, naïve pluripotent 
stem cells, primed pluripotent cells, and tissue‑specific 
multipotent stem cells. Totipotent cells, characteristic of 
the zygote and early blastomeres, can develop into all 
tissues, including extra‑embryonic tissue. While both 
naïve and primed pluripotent cells can form a teratoma, 
the two different pluripotent states have distinct molecular 
differences. Naïve stem cells are in a ground state, harboring 
the prerequisite potential to differentiate into all embryonic 
lineages and develop into chimeric blastocysts. It possesses 
high clonogenicity and does not carry specification 
markers.[84] Primed pluripotent cells, which do not produce 
chimeras, express FGF‑5 specification marker and have 
low clonogenicity. For pluripotency markers, naïve stem 
cells display greater levels of pluripotency marker proteins, 
including OCT‑4, NANOG, SOX‑2, KLF‑2, and KLF‑4, 
while primed cells lose KLF‑2 and KLF‑4 expression. 
Aside from the naïve and primed pluripotent states, a study 
discovered an intermediate pluripotent stage between the 
two states.[85] The tissue‑specific multipotent stem cell has 
the least differentiating potency among all stem cell types, 
with the ability to form tissue‑specific cell types.[86,87]

Human embryonic stem cells
The success in generation and culture of ESCs from mice, 
primates, and human embryos has been considered a milestone 
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of stem cell research. ESCs are a useful tool for exploring early 
embryonic development, modeling pathological processes of 
diseases, and developing therapeutics through drug discovery 
and potential cell replacement.[88‑90] The human ESCs (hESCs) 
now hold a great promise for regenerative medical treatments 
as the cells can generate any cell type of the body. The 
hESCs are mainly defined as primed pluripotent cells, which 
are different from and show less plasticity than the murine 
ESCs. It remains unclear whether human‑naïve pluripotent 
stem cells, obtained either by continued transgene expression 
or through specific chemical manipulation of the culturing 
microenvironment, are analogous to mouse counterparts.[91‑95] 
Nevertheless, it is worthwhile to validate the findings from 
these reports using naïve hESCs generated from different 
strains and laboratories in future studies.

Differentiation of hESCs in vitro has been achieved at very high 
efficiencies into various transplantable progenitors/precursors 
and terminally differentiated neuronal and glial cell types, 
which include cortical glutamatergic, striatal γ‑aminobutyric 
acid gamma aminobutyric acid‑ergic, forebrain cholinergic, 
midbrain dopaminergic, serotonergic, and spinal motor 
neurons, as well as astrocytes and oligodendrocytes.[96‑102] 

These differentiated cells, including neurons, astrocytes, 
and oligodendrocytes, have been exogenously transplanted 
and evaluated in animal models. Translation into the clinic 
is ongoing for various neurological disorders, including: (1) 
PD, in which nigro‑striatal neurons are lost before other 
neurons, (2) HD, in which MSNs are lost, resulting in striatal 
atrophy, and (3) glial and myelin disorders.[103‑106] Other 
disorders, including AD and Lewy body disease, which 
involve a multitude of neuronal cell types, and amyotrophic 
lateral sclerosis (ALS) and spinal muscular atrophy, which are 
multicentric and diffuse neurodegenerative disorders, remain 
poor targets for stem cell‑based therapies. To date, it is widely 
accepted that glial metabolic deficiencies might contribute to 
disease progression in ALS, in which neurons might be the 
paracrine victims of glial dysfunction. As such, cell‑based 
treatment approaches for ALS and other neurodegenerative 
disorders have thus shifted the focus away from neuronal 
replacement toward glial replacement.[107] If successful, such 
studies might herald the application of hESC‑derived glia for 
treating ALS and related disorders.

Induced pluripotent stem cells
The iPSCs are pluripotent cells that are artificially 
de‑differentiated from adult somatic cells by several 
transcription factors or small‑molecule compounds and 
have ignited the field of lineage reprogramming.[108,109] 
There are epigenetic differences between iPSCs and ESCs, 
which include expressions of unique genetic signatures, 
teratoma formation capacity, and the differentiation potency 
and flexibility  (e.g., dissimilar differentiation potential 
into various transplantable neural cells[110]). Furthermore, 
compared to ESCs, iPSCs can be more amenable as donor 
cells for cell replacement therapy, in vitro disease models, 
and drug screening.[111‑113] First, iPSCs are derived from adult 
somatic cells, which can be easily obtained from patients, 
and then banked and stored. Second, cultures of hiPSCs 
and hESCs are technically similar, but the generation of 
iPSCs harbors much less ethical concern and opposition.[114] 
Third, given the somatic cell source and the autologous 
nature of iPSCs, cell therapy using iPSCs should have no 
immune rejection in theory, or at least minimize the risk of 
immune system rejection. However, a recent report suggests 
that some unusual gene expressions in transplanted cells 
derived from the iPSCs may trigger an immune response.[115]

The miPSCs and hiPSCs provide a powerful tool for 
developmental biology research and translational medicine. 
To develop and achieve fast improvement in pharmaceutical 
agents, iPSCs combined with microfluidic technology 
have provided bio‑screening platforms, allowing for 
high‑throughput preclinical drug screening and advancing 
the search for new pharmacological therapies. Furthermore, 
iPSCs allow for greater experimental interrogation and 
convenience compared to transgenic animal models when 
determining clinically relevant doses and the short‑  and 
long‑term adverse effects.

One of the most exciting features of iPSCs is the potential use 
of reprogrammed somatic cells to establish disease‑relevant 

Figure  1: Human ESCs‑  and iPSCs‑derived neuronal and glial cell 
therapeutics. This sketch shows the potential use of human ESCs‑ and 
iPSCs‑derived neuronal and glial cells to treat the neurological 
disorders. ESCs: Embryonic stem cells; iPSCs: Induced pluripotent 
stem cells; TALEN: Transcription activator‑like effector nucleases.
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phenotypes in  vitro and to simulate and recapitulate the 
molecular signatures of pathogenesis in an early stage. This 
has been implemented in a variety of neurological disorders, 
such as familial dysautonomia, Rett syndrome, HD, AD, 
ALS, PD, and schizophrenia.[116‑121] According to the National 
Institutes of Health  (NIH)‑established ethical guidelines 
and standards, the hiPSC repositories of personalized cell 
lines from patients can be developed and banked, and 
the iPSC technology can be used to model disease and 
screen drugs. Genetic modifications or enhancements of 
patient iPSCs are being tested (e.g., reinfusion treatment 
for patients with sporadic diseases). Genome editing 
of hiPSCs uses programmable nucleases including 
transcription activator‑like effector nucleases and clustered 
regularly interspaced short palindromic repeats Cas9 
technology.[122‑124] Genome editing has greatly expanded 
our vision for understanding of pathological processes 
by studying cellular/disease models, and human cells and 
tissue, in which the programmable nucleases can directly 
correct/introduce genetic mutations. Compared to traditional 
drug therapy, therapeutic genome editing strategies provide 
an alternative method to treat both genetic diseases and 
diseases with genetic and environmental factors, such as 
hemophilia and severe combined immunodeficiency.[125] 
A combination therapy with iPSCs and genome editing 
is proposed as a new therapy to introduce protective 
mutations, to correct deleterious mutations, to eliminate the 
antigenic/immunogenic signals in the iPSCs, or to destroy 
foreign viral DNAs in the human body.[126] In the absence 
of exogenous template DNA, the programmable nucleases 
create a double strand break (DSB) in desired regions, but 
due to the error‑prone nonhomologous end joining (NHEJ) 
mechanism of re‑ligation, an insertion/deletion  (indel) 
mutation is frequently created at the DSB site. NHEJ‑based 
genome editing has been tested in several proof‑of‑concept 
studies for treating genetic diseases. The reported editing 
on fibroblast growth factor receptor‑3  (FGFR‑3) for 
achondroplasia and dystrophin for Duchenne muscular 
dystrophy specifically inactivated the mutant allele, 
corrected the disease mutation, and shut down the expression 
of pathogenic gene product.[127] Another example was to treat 
trinucleotide repeat disorders, such as fragile X syndrome 
and HD. To ablate the triple repeats, a pair of single‑guide 
RNAs was applied to target both sides during the expansion. 
NHEJ‑based genome editing antagonized a viral infection 
in several proof‑of‑concept experiments including hepatitis 
B virus and human immunodeficiency virus.[128‑130] 
Other than NHEJ, the high‑fidelity homology‑directed 
repair  (HDR)‑based mechanism of genome editing was 
studied to treat deleterious loss‑of‑function mutations, 
such as cystic fibrosis and β‑thalassemia. HDR‑based 
genome editing provides an exogenous repair template 
of a single‑stranded oligodeoxynucleotide and a donor 
plasmid to correct a mutated allele to be wild type. It could 
also integrate therapeutic transgenes into a genomic safe 
harbor site.

Mesenchymal stem cells
MSCs derived from the bone marrow, umbilical cord 
blood, and adipose tissue could exert immunomodulatory 
and anti‑inflammatory effects in CNS disease models such 
as stroke and MS.[131] The bone marrow‑derived MSCs 
were shown to promote neuronal survival and remove 
amyloid plaques in a rat AD model.[132] Overexpression 
of some neurogenic/angiogenic factors such as VEGF in 
the transplanted MSC cells might help improve memory 
and induce neovascularization/neurogenesis within the 
adult brains. Clinical trials demonstrated safety and 
feasibility of MSC transplantation in acute and chronic 
stroke with no tumorigenicity reported following cellular 
transplantation.[133]

Fetal neural progenitor cells
Fetal NPCs, which can differentiate into functional neurons 
and multiple types of neuroglia, are an ideal platform to 
bridge the gap between traditional model systems and 
human biology.[134‑137] The differentiation of fetal hNPCs 
in vitro could recapitulate brain development. Recent efforts 
intending to measure the transcriptome from the fetal human 
brain provide an unbiased in vivo standard using single‑cell 
approaches and genome‑wide transcriptome analyses.[138,139] 
The studies suggested that the fetal hNPCs have a stronger 
matching genomic overlap with the in vivo cortex compared 
to hiPSCs, allowing for the identification of specific 
neurodevelopmental processes related to pathophysiology 
of developmental disorders. Fetal hNPCs were investigated 
in clinical trials for the treatment of spinal cord injury (SCI) 
and AMD, but the safety has not yet been verified.

Preconditioning in Stem Cell Therapy

Hypoxia‑regulated cell differentiation and regeneration
NSC phenotypes and repair mechanisms have been studied 
as a regenerative therapy in CNS diseases. Normally, hypoxic 
conditions and intracellular ROS levels help maintain the 
proliferation and self‑renewal of NSCs in the brain.[140] 
HIF‑1α overexpression can promote NSC proliferation 
and differentiation after intracerebral hemorrhage and 
hypoxic/ischemic injury. HIF‑1α has been shown to promote 
the ESC differentiation into dopaminergic neurons.[141] 
Studies about hippocampal CA1 neurogenesis suggest that 
the attenuated Notch‑1 signaling by an inhibitor of γ‑secretase 
might determine the neuronal lineage differentiation. 
Leukemia inhibitory factor  (LIF) and phosphorylated 
signal transducer and activator of transcription 3 are 
dramatically increased after hypoxic‑ischemic injury, which 
activate LIF receptor  (LIFR)/glycoprotein  (gp130) 
and Notch‑1 for expansion of NSCs in the brain.[142] 
Metformin, a well‑tolerated oral medication, promotes adult 
neurogenesis through activation of atypical protein kinase 
C/CREB‑binding protein pathway. Preclinical studies using 
hypoxic‑ischemic injury models have shown that treatment 
using metformin can alleviate sensorimotor defects and 
reduce ischemia‑reperfusion injury.[143,144]
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Hypoxia‑ischemia has been shown to cause accumulation of 
HIF‑1α and an increase in VEGF/VEGFR in endothelial cells 
and EPO/EPOR in glial cells.[145‑147] In hypoxic conditions 
of 3% oxygen, upregulation of angiogenic factors  (such 
as angiotensin II  [Ang II], angiotensin‑converting 
enzyme [ACE], and Ang II receptor Type 1 [AT1R]) and 
some specification transcriptional factors  (such as the 
SOX‑2) was observed. Ang II pretreatment activated the 
AT1R/HIF‑1α/ACE axis in rat BMSCs and promoted 
VEGF production and the angiogenic response. Co‑culturing 
of stem cells from apical papilla and human umbilical 
venous endothelial cells resulted in the formation of 
endothelial tubules, which was bolstered by hypoxic 
conditions.[148] Involvement of miRNA‑31 and miRNA‑720 
in vascularization by EPCs was also reported in coronary 
artery disease, and this phenomenon was directed by HIF‑1α 
signaling.

Glial progenitor cells in the SVZ and the white matter 
are activated and expanded after ischemia, and this 
can be further augmented by treatments, including 
uridine diphosphoglucose glucose, GDNF, epidermal 
growth factor, EPO, or memantine to differentiate into 
oligodendrocytes.[149,150] Hypoxic‑ischemic brain injury in 
neonates induces cell death in committed neural precursors 
but stimulates the proliferation and differentiation 
of immature neural progenitors for brain repairs.[151] 
Transplantation of stem cells such as UCBMCs might 
promote the proliferation and neuronal differentiation of 
endogenous NSCs. Neurogenin‑1 upregulation and BMP‑4 
downregulation have been identified as putative mediators 
of these activities.[152]

Hypoxia‑ischemia induces repair mechanisms of endogenous 
stem cells, and more recently identified, stemness of 
resident cells via reprogramming.[153] In MSCs, hypoxia 
regulates miRNA‑302, which supports their reprogramming 
into pluripotent states. The combination of hypoxia and 
fibroblast growth factor 2  (FGF‑2) together induces the 
expression of OCT‑4 and NANOG in L87 cells and primary 
MSCs.[154] After inhibition by FGF‑2, the proliferation of 
human MSCs is inhibited, leading to an osteogenic or an 
adipogenic differentiation.[155] In 2% oxygen conditions 
and ECM adhesion, viability and multi‑potentiality can be 
preserved in transplantation therapy. In slice culture models, 
hypoxic preexposure will markedly reduce the survival 
of seeded stem cells on the slices. Methylprednisolone, a 
widely used glucocorticoid or corticosteroid drug, inhibits 
the endogenous brain repair mechanisms after treating 
SCI through changing a variety of growth and angiogenic 
factors.[156] Maintaining NSC renewal by drug‑inducing 
Notch‑1, OCT‑4, and SOX‑2 expressions may promote 
regeneration after SCI.[157] Differentiation and survival of 
progenitor/stem cells might also be affected in hypoxic, 
starvation, and ischemic conditions.

An ischemic insult to the cortex can markedly increase 
the expression of SDF‑1 in the ischemic region, which is 
a chemoattractant for directional migration of neuroblasts 

expressing CXCR‑4.[158] Hypoxia can induce migration in 
various types of cells, including BMSCs, cardiac SCA‑1+ 
progenitors, ESCs/iPSCs, NSCs, and many tumor cells.[159‑163] 
The SDF‑1/CXCR4 axis and hypoxia are mediators for 
BMSC/EPC migration in the bone marrow, the peripheral 
blood, and many other organs.[83,164,165] Upon hypoxic stimuli, 
IL‑8 is upregulated and activated in acute myeloid leukemia 
immune cells, which show greater migration out of the stem 
cell niche.[166]

Transplantation of stem cells
Stem cell transplantation holds a great promise for vascular 
diseases and many other degenerative disorders.[167‑169] 
As a therapeutic goal for cell transplantation, stimulated 
angiogenesis ameliorates hypoxia and provides nutrient 
support, which might help functional recovery through 
regenerative mechanisms. Transplantation of BMSCs in the 
acute phase exerts neuroprotective benefits after ischemia. Our 
group and others demonstrated that hypoxic‑preconditioned 
BMSCs and neural progenitors showed significant increases 
in the survival of transplanted cells, homing to the lesion 
sites, neuronal differentiation, and functional benefits 
after stroke.[42,159,163,170] Multiple cellular and molecular 
mechanisms and the beneficial effects of transplantation 
of hypoxic‑preconditioned cells were summarized in 
previous reviews[2,171]  [Figure 2]. More recently shown in 
different animal models, hypoxic preconditioning combined 
with IL‑7 overexpression in rat BMSCs was shown to 
increase the migration capacity and fusion potential with 
renal epithelial cells.[172] Hypoxic preconditioning might 
also combine with other anti‑apoptotic/oxidative stress 
pretreatment on MSCs to show greater fusion with host 
cells and regenerating capacity after ischemia or for treating 
diabetes and cardiovascular diseases. Recent studies have 
attempted to use conditioned medium from OGD‑treated 
neurons to precondition human UCMSCs, showing greater 
pro‑angiogenic effects.[173] Conditioned medium from 
UCMSCs subjected to hypoxia could further enhance 
mitogenic activity of cardiac SCA‑1+ progenitors, indicating 
a paracrine mechanism.[174] Hypoxia‑treated hMSCs contain 
an enriched secretome of trophic factors which might 
provide a suitable preconditioning strategy for enhanced 
differentiation of NPCs after transplantation.[175]

Transplantation of BMSCs engineered with miRNA‑377 
along with direct repression of VEGF transcription showed 
significantly reduced vessel density and increased fibrosis 
in the infarcted myocardium.[176] Delivery of saphenous 
vein‑derived pericyte progenitor cells in myocardial 
infarction models demonstrates a novel role of miRNA‑132 
in paracrine activation by targeting Ras‑GTPase‑activating 
protein and methyl‑CpG‑binding protein 2.[177] Stem cells 
cultured in hypoxic conditions show enhanced differentiation 
potential. Compared to 20% oxygen in  vitro conditions, 
vascularization by the adipose‑derived stromal stem 
cells (ASCs) was significantly decreased in moderate (2% 
oxygen) and severe (0.2% oxygen) hypoxia conditions.[178] 
Interestingly, this in vitro test showed an unchanged level 
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of VEGF, indicating an independent pathway for the 
angiogenesis control.[178] Another group showed that severe 
hypoxia  (0.2% oxygen) dramatically increased both 
transcriptional and translational levels of VEGF‑A and 
Ang in ASCs.[179] Released VEGF‑A was an apoptosis 
inhibitor of vascular smooth muscle cells controlled by 
TGF‑β/SMAD‑3.[179] Sublethal CoCl2 treatment on OPC 
induced a chemical hypoxic stress and suppressed the 
oligodendroglial differentiation.[180] CoCl2  (0.5 mmol/L) 

Figure 2: Mechanisms underlying the beneficial effects of hypoxic preconditioning. The hypoxic preconditioning strategy was designed to mimic and 
utilize endogenous protective mechanisms to promote neuroprotection, tissue regeneration, and brain function recovery. Hypoxic preconditioning 
directly induces HIF‑1 upregulation that increases BDNF, SDF‑1, VEGF, EPO, and many other genes which can stimulate neurogenesis, angiogenesis, 
vasodilatation, and increase cell survival. HIF‑1 expression regulates antioxidants, survival signals, and other genes related to cell adhesion, 
polarization, migration, and anti‑inflammatory responses. Partially adapted from a previous publication (Wei L, et al. Stem cell transplantation 
therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017.). AhR: Aryl hydrocarbon receptor; AP‑1: Activator protein 1; ARNT: 
AhR nuclear translocator; ASC: Adipose tissue‑derived stromal stem cell; BDNF: Brain‑derived neurotrophic factor; BMP‑4: Bone morphogenetic 
protein 4; BMSC: Bone marrow‑derived mesenchymal stem cell; Casp: Caspase; CBP: CREB‑binding protein; CNS: Central nervous system; CREB: 
cAMP response element‑binding protein; Cx43: Connexin 43; CSE: Cystathionine γ‑lyase; CXCR‑4: CXC chemokine receptor 4; Cyt c: Cytochrome 
c; Epac: Exchange protein directly activated by cAMP; EGF: Epidermal growth factor; EPC: Endothelial progenitor cell; EPO: Erythropoietin; ERK: 
Extracellular signal‑regulated kinase; ESC: Embryonic stem cell; FAK: Focal adhesion kinase; FGF‑2: Fibroblast growth factor‑2; FoxO‑3: Forkhead box 
O3; GDNF: Glial cell line‑derived neurotrophic factor; G‑6‑PT: Glucose‑6‑phosphate transporter; GLUT‑3: Glucose transporter isoform‑3; GSK‑3β: 
Glycogen synthase kinase‑3 beta; H2S: Hydrogen sulfide; Hes1: Hairy and enhancer of split 1; H/I: Hypoxia‑ischemia; HIF‑1α: Hypoxia‑inducible 
factor‑1 alpha; HRE: Hypoxia response element; Hsp: Heat shock protein; IL‑10: Interleukin 10; JAK: Janus kinase; LIF: Leukemia inhibitory factor; 
LIFR: LIF receptor; miRNAs: microRNAs; MECP2: Methyl‑CpG‑binding protein 2; MIF: Migration inhibitory factor; MMP: Matrix metalloproteinase; 
MSCs: Mesenchymal stem cells; N2A: Neuro 2A; NCX‑1: Sodium–calcium exchanger‑1; NGN‑1: Neurogenin‑1; NOS: nitric oxide synthase; 
NSC: Neural stem cell; OCT‑4: Octamer‑binding transcription factor‑4; OGD: Oxygen‑glucose deprivation; OPC: Oligodendrocyte progenitor cell; 
PDAC: Pancreatic ductal adenocarcinoma; PDK: Pyruvate dehydrogenase kinase; PlGF: Placental growth factor; polyP: Polyphosphate; RasGAP: 
Ras‑GTPase‑activating protein; ROS: Reactive oxygen species; SCA‑1: Stem cell antigen‑1; SCAP: Stem cell from apical papilla; SCI: Spinal 
cord injury; SDF‑1: Stromal‑derived factor‑1; STAT‑3: Signal transducer and activator of transcription‑3; SIRT‑1: Silent‑mating‑type information 
regulation 2 homolog‑1; SVP: Saphenous vein‑derived pericyte; SVZ: Subventricular zone; TGFβ‑1: Transforming growth factor β‑1; TIMP‑1: 
Tissue inhibitor of metalloproteinase; UCHSCs: Umbilical cord blood hematopoietic stem cells; UDPG: Uridine diphosphoglucose‑glucose; UCP: 
Uncoupling protein; UVECs: Umbilical venous endothelial cells; VEGF: Vascular endothelial growth factor.

also increased Eph family receptor‑interacting protein B2 
(ephrin B2), HIF‑1α, and VEGF.

As a means of improving survival and oxidative 
resistance of BMSCs for transplantation therapy, chemical 
preconditioning  (e.g., H2S, LPA, MIF, and pitavastatin) 
has been suggested.[170,181] A three‑dimensional culture of 
cardiac SCA‑1+ progenitors showed improved cell survival 
under hydrogen peroxide and anoxia/reoxygenation in 
the ischemic heart after transplantation.[182] An elevation 
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of Sonic hedgehog, Wnt, and BDNF signaling in the 
SVZ or transplanted cells may promote the regenerative 
processes of neural progenitors in hypoxic‑ischemic injury 
models.[183,184] Following adipose stem cell transplantation, 
animals housed in an environment allowing voluntary 
physical exercises showed even better functional recovery 
after hypoxic‑ischemic brain injury.[185] Co‑treatment 
of rat BMSCs with laminin micro‑carriers releasing 
angiogenic VEGF shows some synergistic effects, including 
angiogenesis and enhanced immature neuron migration 
toward ischemic core regions.[186] Combination therapy using 
viral VEGF overexpression and BMSCs might result in the 
smallest size of infarct and the best functional recovery. 
Many other growth factors (FGF, GDF‑5, IGF‑1, and TGF‑β) 
have been suggested for combination therapy with cell 
transplantation to treat intervertebral disc degeneration and 
enhancing nucleus pulposus‑like differentiation of MSCs.[187]

Conclusions

Stem cell research has made a rapid progress and great 
hope for treating a wide spectrum of neurological disorders. 
Expansion of the repertoire of available stem cell subtypes 
and an increased understanding of their differentiation 
potency bring us one step closer toward clinical translation. 
Furthermore, stem cell models provide far‑reaching 
applications for translational medicine studies, including 
in  vitro disease models to elucidate developmental and 
pathological mechanisms. Exogenous stem cells and NPCs 
investigated for treating neurological disorders originate 
from a variety of sources, including ESCs derived from 
the inner mass of blastocysts, iPSCs reprogrammed from 
somatic cells, MSCs, or even adult NS/NPCs.[188] In addition, 
a combination of hESCs and hiPSCs with gene‑editing 
technologies might provide enhanced cell replacement, 
trophic support, drug delivery, and immunomodulatory and 
anti‑inflammatory effects. Many clinical trials are under 
way. Transplantation of lineage‑committed cells and the 
control in the quality and number of transplanted cells have 
eliminated the risk of tumorigenesis. Efforts are still needed 
to detect and eliminate cancer stem cells and continuously 
prevent tumor formation. Another concern is that the cells 
after transplantation might trigger transplant rejection by the 
immune system in the long term. This concern is partially 
resolved now by utilizing autologous iPSCs reprogrammed 
from the host’s own somatic cells. Increasing evidence 
also suggests that MSCs are low immunogenicity cells and 
show immunosuppressing effects after transplantation.[189] 
Other issues include optimization of the transplantation 
window and anatomic site, as well as generation of pure and 
specific differentiated cells. Hypoxic and ischemic models 
have been widely used in the research and development of 
new drugs and clinical therapy. Preconditioning benefits 
are induced by an adaptation after a sublethal stimulus 
and an enhanced resistance to the lethal injury, with many 
survival and regenerative genes involved. Among them, the 
upstream signaling mediators, especially HIF‑1α, might 

have a great potential as targets for drug development for 
neuroprotection and neuroregeneration. Transplantation of 
hypoxia‑preconditioned cells appears to be the first feasible 
strategy to take the advantage of hypoxic tolerance in clinical 
applications. Furthermore, preconditioning treatments 
on remote tissues or organs  (remote preconditioning) 
demonstrate great therapeutic efficacy with a high 
translational potential. While they both serve therapeutic 
purposes individually, hypoxic preconditioning and stem 
cell therapy display tremendous synergistic effects together 
that warrant further preclinical and eventually clinical 
studies.
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